segunda-feira, 14 de dezembro de 2009

Notas de alunos

Clique aqui para baixar a relação com as notas.

quarta-feira, 11 de novembro de 2009

Lista de Exercícios

lista de exercicios

Vídeo Matemática Função Exponencial


Gráficos da Função Exponencial

A construção de gráficos de função exponencial segue dois modelos, quando o valor da base é maior que 1 e quando o valor da base está entre 0 e 1. Veja esses modelos esboçados:
Dada a função f(x) = ax, veja como ficarão os gráficos dependendo do valor de a (base).



• Esse gráfico representa uma função exponencial crescente onde a > 1.

• Imagem e domínio: x1 e x2 são os valores do domínio dessa função e os valores de y1 e y2 são os valores da imagem dessa função, sendo que a imagem será sempre (quando o valor da base é maior que 1) um valor real positivo diferente de zero.






• Esse gráfico representa uma função exponencial decrescente onde
0 < a < 1.

• Imagem e domínio: x1 e x2 são os valores do domínio dessa função e os valores de y1 e y2 são os valores da imagem dessa função, sendo que a imagem será sempre (quando o valor da base é maior que 1) um valor real positivo diferente de zero.

Os dois tipos de gráficos possuem características semelhantes, essas são características para qualquer gráfico de função exponencial.

• O gráfico (curva) nunca irá interceptar o eixo x, pois a função exponencial não possui raiz.

• O gráfico (curva) irá cortar apenas o eixo y e sempre será no ponto 1, sendo que os valores de y sempre serão positivos.

O Crescimento Populacional ( Uma Aplicação de Função Exponencial)

Em 1798, Thomas Malthus, no trabalho "An Essay on the Principle of Population" formulou um modelo para descrever a população presente em um ambiente em função do tempo. Considerou N=N(t) o número de indivíduos em certa população no instante t. Tomou as hipóteses que os nascimentos e mortes naquele ambiente eram proporcionais à população presente e a variação do tempo conhecida entre os dois períodos. Chegou à seguinte equação para descrever a população presente em um instante t:

N(t)=No ert

Onde No é a população presente no instante inicial t=0 e r é uma constante que varia com a espécie de população.

É evidente que o gráfico correto desta função depende dos valores de No e de r. Mas sendo uma função exponencial, a forma do gráfico será semelhante ao da função y=Kex.

Este modelo supõe que o meio ambiente tenha pouca ou nenhuma influência sobre a população. Desse modo, ele é mais um indicador do potencial de sobrevivência e de crescimento de cada espécie de população do que um modelo que mostre o que realmente ocorre.

Consideremos por exemplo uma população de bactérias em um certo ambiente. De acordo com esta equação se esta população duplicar a cada 20 minutos, dentro de dois dias, estaria formando uma camada em volta da terra de 30 cm de espessura. Assim, enquanto os efeitos do meio ambiente são nulos, a população obedece ao modelo N=Noer.t. Na realidade, quando N=N(t) aumenta, o meio ambiente oferece resistência ao seu crescimento e tende a mantê-lo sobre controle. Exemplos destes fatores são, a quantidade disponível de alimentos, acidentes, guerras, epidemias,...

Como aplicação numérica, consideremos uma colônia de bactérias se reproduzindo normalmente. Se num certo instante havia 200 bactérias na colônia, passadas 12 horas havia 600 bactérias. Quantas bactérias haverá na colônia após 36 horas da última contagem?

No instante inicial havia 200 bactérias, então No=200, após 12 horas havia 600 bactérias, então

N(12)=600=200 er12

logo

e12r=600/200=3

assim

ln(e12r)=ln(3)

Como Ln e exp são funções inversas uma da outra, segue que:

12r=ln(3)

assim:

r=ln(3)/12=0,0915510

Assim:

N(48)=200 e48.(0,0915510)= 16200 bactérias

Então, após 36 horas da última contagem, ou seja, 48 horas do início da contagem, haverá 16200 bactérias.

Referência Bibliográfica:


http://www.coladaweb.com/matematica/funcao

História da Função Exponencial

Conta a lenda que um rei solicitou aos seus súditos que lhe inventassem um novo jogo, a fim de diminuir o seu tédio. O melhor jogo teria direito a realizar qualquer desejo. Um dos seus súditos inventou, então, o jogo de xadrez. O Rei ficou maravilhado com o jogo e viu-se obrigado a cumprir a sua promessa. Chamou, então, o inventor do jogo e disse que ele poderia pedir o que desejasse. O astuto inventor pediu então que as 64 casas do tabuleiro do jogo de xadrez fossem preenchidas com moedas de ouro, seguindo a seguinte condição: na primeira casa seria colocada uma moeda e em cada casa seguinte seria colocado o dobro de moedas que havia na casa anterior. O Rei considerou o pedido fácil de ser atendido e ordenou que providenciassem o pagamento. Tal foi sua surpresa quando os tesoureiros do reino lhe apresentaram a suposta conta, pois apenas na última casa o total de moedas era de 263, o que corresponde a aproximadamente 9 223 300 000 000 000 000 = 9,2233.1018. Não se pode esquecer ainda que o valor entregue ao inventor seria a soma de todas as moedas contidas em todas as casas. O rei estava falido!
A lenda nos apresenta uma aplicação de funções exponenciais, especialmente da função y = 2 x.


As funções exponenciais são aquelas que crescem ou decrescem muito rapidamente. Elas desempenham papéis fundamentais na Matemática e nas ciências envolvidas com ela, como: Física, Química, Engenharia, Astronomia, Economia, Biologia, Psicologia e outras.

sábado, 12 de setembro de 2009

PROPRIEDADES DA FUNÇÃO EXPONENCIAL

Se a, x e y são dois números reais quaisquer e k é um número racional, então:

  • ax ay= ax + y
  • ax / ay= ax - y
  • (ax) y= ax.y
  • (a b)x = ax bx
  • (a / b)x = ax / bx
  • a-x = 1 / ax

Vídeo Vestibulando Digital

Definição:

A função exponencial é a definida como sendo a inversa da função logarítmica natural, isto é:



Podemos concluir, então, que a função exponencial é definida por: